The DA02B EtherCAT® Baratron® capacitance manometer continues that progression of high performance into networked systems, using industry-standard EtherCAT digital communications to connect to complex process tools. Based on the proven 627C and 628C Ethernet-equipped Baratron products, the EtherCAT Baratron manometer meets the current SEMI® EtherCAT Common Device Profile and is designed for use in advanced processing systems.
Features
Baratron® Capacitance Manometer Technology
Capacitance manometers are electro-mechanical gauges that can measure both pressure and vacuum. The capacitance gauge translates a pressure-modulated movement in a thin diaphragm into an electrical signal proportional to the pressure. The pressure sensor is the thin diaphragm that is exposed to the pressure or vacuum being measured via the inlet tube. An electrode is mounted in the reference cavity behind the diaphragm. Pressure differences between the process and the reference cavity deflect the diaphragm slightly, changing the distance between it and the electrode. Variations in this distance produce variations in the capacitance between the diaphragm and the electrode creating an electrical signal that is proportional to the pressure change. Since differences in the capacitance signal are produced by physical changes within the manometer and not by changes in the gas properties, pressure measurements by the capacitance manometer are independent of the composition of the gas being measured.
Internally Heated to 45°C, 80°C or 100°C
These capacitance manometers are temperature controlled to 45°C, 80°C or 100°C for improved accuracy. Unheated versions are exposed to ambient temperature variations which can degrade the sensor accuracy. These devices have the sensor enclosed in a volume that is maintained at a constant temperature above ambient. This solution improves the manometer’s accuracy and repeatability and lowers instrument drift by reducing or eliminating process contamination within the manometer. Heated manometers are recommended for applications that require maximum accuracy and repeatability, operate above ambient temperature and for those processes that employ hot gases.
Absolute Pressure Measurement
These Baratron® pressure transducers are referenced to vacuum for absolute pressure measurement. Applications include: vacuum furnaces, freeze-drying of fruits and vegetables, gas lasers, automotive component testing, bottle coatings, and vacuum distillation.
Inconel® and Incoloy® Construction Wetted Surfaces
These pressure transducers feature Inconel® and Incoloy® nickel alloy construction of the pressure sensor allowing it to operate without damage in virtually any chemical environment, including halogens, deionized water and steam, and ozone. The sensor is fully welded with no intermediate brazing or joining materials.
0 to 10 VDC Proportional Analog Output
These Baratron® capacitance manometers feature a high-level 0-10 VDC analog output signal that is linear with pressure. This analog output can be interfaced with an MKS pressure controller, an MKS power supply/display instrument, or any instrument that meets these requirements.
EtherCAT® Communications
These e-Baratron EtherCAT® enabled capacitance manometers continue the progression of high performance into networked systems, using industry-standard EtherCAT digital communications to connect to complex process tools. Based on the proven 627C and 628C Ethernet-equipped e-Baratron products, the EtherCAT e-Baratron manometer meets the current SEMI® EtherCAT Common Device Profile and is designed for use in advanced processing systems.
Accessories
Power Supplies and Displays
Resources
Literature
Application Notes
Minimizing Fluorine-Induced Drift in Capacitance Manometers(307.1 kB, PDF)





